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Abstract. In this paper we investigate the use of latent variable structured predic-
tion models for fine-grained sentiment analysis in the common situation where
only coarse-grained supervision is available. Specifically, we show how sentence-
level sentiment labels can be effectively learned from document-level supervision
using hidden conditional random fields (HCRFs) [25]. Experiments show that this
technique reduces sentence classification errors by 22% relative to using a lexicon
and by 13% relative to machine-learning baselines.

We provide a comprehensible description of the proposed probabilistic model
and the features employed. Further, we describe the construction of a manually
annotated test set, which was used in a thorough empirical investigation of the
performance of the proposed model.!

1 Introduction

Determining the sentiment of a fragment of text is a central task in the field of opinion
classification and retrieval [22]. Most research in this area can be categorized into one
of two categories: lexicon or machine-learning centric. In the former, large lists of
phrases are constructed manually or automatically indicating the polarity of each phrase
in the list. This is typically done by exploiting common patterns in language [12,27,
14], lexical resources such as WordNet or thesauri [15, 3, 26, 19], or via distributional
similarity [33, 31, 32]. The latter approach — machine-learning centric — builds statistical
text classification models based on labeled data, often obtained via consumer reviews
that have been tagged with an associated star-rating [23,21, 10, 11, 17,4, 28].

Both approaches have their strengths and weaknesses. Systems that rely on lexicons
can analyze text at all levels, including the clausal and phrasal level, which is fundamental

* Part of this work was performed while the author was an intern at Google, Inc.
! This technical report is an expanded version of the shorter conference paper [29].
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a) Document sentiment analysis

Input Document: .
Overall sentiment = NEU

1. This is my third Bluetooth device in as many years.
The portable charger/case feature is great!

2. . .
3. Makes the headset easy to carry along with cellphone. b) Sentence sentiment analysis
4.
5.

Sentence | = NEU Sentence 4 = NEG
Sentence 2 = POS  Sentence 5 = NEG
Sentence 3 = POS

Though the headset isn’t very comfortable for longer calls.
My ear starts to hurt if it’s in for more than a few minutes.

Fig. 1. Sentiment analysis at different levels. a) Standard document level analysis. b) A simple
example of fine-grained sentiment analysis epitomized through sentence predictions.

to building user-facing technologies such as faceted opinion search and summarization
[1,13,10,24,5,3,30,38]. However, lexicons are typically deployed independent of
the context in which mentions occur, often making them brittle, especially in the face
of domain shift and complex syntactic constructions [35,7]. The machine-learning
approach, on the other hand, can be trained on the millions of labeled consumer reviews
that exist on review aggregation websites, often covering multiple domains of interest
[23,21,4]. The downside is that the supervised learning signal is often at a coarse level,
i.e., the document level.

Attempts have been made to bridge this gap. The most common approach is to
obtain a labeled corpus at the granularity of interest in order to train classifiers that take
into account the analysis returned by a lexicon and its context [35, 3]. This approach
combines the best of both worlds — knowledge from broad-coverage lexical resources
in concert with highly tuned machine-learning classifiers that take into account context.
The primary downside of such models is that they are often trained on small sets of
data, since fine-grained sentiment annotations rarely exist naturally and instead require
significant annotation effort per domain [34].

To circumvent laborous annotation efforts, we propose a model that can learn to
analyze fine-grained sentiment strictly from coarse annotations. Such a model can
leverage the plethora of labeled documents from multiple domains available on the web.
The model we present is based on hidden conditional random fields (HCRFs) [25], a
well-studied latent variable structured learning model that has been used previously
in speech and vision. We show that this model naturally fits the task and can reduce
fine-grained classification errors by up to 20%.

2 Fine-grained sentiment analysis

Figure 1 shows an example where sentence sentiment is contrasted with document
sentiment. This is perhaps the simplest form of fine-grained sentiment analysis and one
could imagine building an analysis at the clause or phrase level annotating multiple
attributes of opinions beyond their polarity [34]. Though all the methods described
henceforth could conceivably be applied to finer levels of granularity, in this work, we
focus on sentence level sentiment (or polarity) analysis. To be concrete, as input, the
system expects a sentence segmented document and outputs the corresponding sentence
labels from the set {POS, NEG, NEU} as shown in Figure 1 and defined precisely below.
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2.1 Data for training and evaluation

There are several freely available data sets annotated with sentiment at various levels
of granularity; a comprehensive list of references is given in [22]. For our experiments,
described in Section 4, we required a data set annotated at both the sentence and
document levels. The data set used in [18] is close in spirit, but it lacks neutral documents,
which is an unrealistic over-simplification, since neutral reviews are abundant in most
domains. Therefore, we constructed a large corpus of consumer reviews from a range of
domains, each review annotated with document sentiment automatically extracted from
its star rating, and a small subset of reviews manually annotated at the sentence level.

A training set was created by sampling a total of 150,000 positive, negative and neu-
tral reviews from five different domains: books, dvds, electronics, music and videogames.
We chose to label one and two star reviews as negative (NEG), three star reviews as
neutral (NEU), and four and five star reviews as positive (POS). After removing duplicates,
a balanced set of 143,580 reviews remained. Each review was split into sentences and
each sentence automatically enriched with negation scope information as described in
[8] and matches against the polarity lexicon described in [35]. As can be seen from the
detailed sentence level statistics in Table 1, the total number of sentences is roughly 1.5
million. Note that the training set only has labels at the document level as reviewers do
not typically annotate fine-grained sentiment in consumer reviews.

The same procedure was used to create a smaller separate test set consisting of 300
reviews, again uniformly sampled with respect to the domains and document sentiment
categories. After duplicates where removed, 97 positive, 98 neutral and 99 negative
reviews remained. Two annotators marked the test set reviews at the sentence level with
the following categories: POS, NEG, NEU, MIX, and NR. The category NEU was assigned
to sentences that express sentiment, but are neither positive nor negative, e.g., “The
image quality is not good, but not bad either.”, while the category MIX was assigned to
sentences that express both positive and negative sentiment, e.g., “Well, the script stinks,
but the acting is great!”. The NR category (for ‘not relevant’) was assigned to sentences
that contain no sentiment as well as to sentences that express sentiment about something
other than the target of the review. All but the NR category were assigned to sentences
that either express sentiment by themselves, or that are part of an expression of sentiment
spanning several sentences. This allowed us to annotate, e.g., “Is this good? No.” as
negative, even though this expression is split into two sentences in the preprocessing step.
To simplify our experiments, we considered the MIX and NR categories as belonging to
the NEU category. Thus, NEU can be viewed as a type of ‘other’ category.

The total number of annotated sentences in the test set is close to four thousand.
Annotation statistics can be found in Table 3, while Table 2 shows the distribution of
sentence level sentiment for each document sentiment category. Clearly, the sentence
level sentiment is aligned with the document sentiment, but reviews from all categories
contain a substantial fraction of neutral sentences and a non-negligible fraction of both
positive and negative sentences. Overall raw inter-annotator agreement was 86% with a
Cohen’s k value of 0.79. Class-specific agreements were 83%, 93% and 82% respectively
for the POS, NEG and NEU category.?

% The annotated test set can be freely downloaded from the first author’s web site:
http://www.sics.se/people/oscar/datasets.
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POS NEG NEU Total
Books 56,996 61,099 59,387 177,482 POS NEG NEU
Dvds 121,740 102,207 131,089 355,036
Electronics 73,246 69,149) 84,264 226,659  POS 0.53 0.08 0.39
Music 65,565 55,229 72,430 193,224  NEG 0.05 0.62 0.33
Videogames 163,187 125,422 175,405 464,014  NEU 0.14 0.35 0.51
Total 480,734 430,307 522,575 1,416,415 Taple 2. Distribution of sen-

Table 1. Number of sentences per document sentiment category ~tence labels (columns) in doc-

for each domain in a large training sample. There are 9,572 docu- Wments by their labels (rows)
ments for each (domain, document sentiment)-pair for a total of 11 the test data.

143,580 documents.
Documents per category Sentences per category

POS NEG NEU Total POS NEG NEU Total
Books 19 20 20 59 160 195 384 739
Dvds 19 20 20 59 164 264 371 799
Electronics 19 19 19 57 161 240 227 628
Music 20 20 19 59 183 179 276 638
Videogames 20 20 20 60 255 442 335 1,032
Total 97 99 98 294 923 1,320 1,593 3,836

Table 3. Number of documents per document sentiment category (left) and number of sentences
per sentence sentiment category (right) in the labeled test set for each domain.

2.2 Baselines

Lexicons are a common tool used for fine-grained sentiment analysis. As a first exper-
iment, we examined the polarity lexicon used in [35], which rates a list of phrases on
a discrete scale in (-1.0, 1.0), where values less than zero convey negative sentiment
and values above zero positive.® To classify sentences, we matched elements from this
lexicon to each sentence. These matches, and their corresponding polarities, were then
fed into the vote-flip algorithm [7], which is a rule-based algorithm that uses the number
of positive and negative lexicon matches as well as the existence of negations to classify
a sentence. To detect the presence of negation and its scope we used an implementation
of the CRF-based negation classifier described in [8]. Results for this system are shown
in Table 5 under the row VoteFlip. We can observe that both classification and retrieval
statistics are fairly low. This is not surprising. The lexicon is not exhaustive and many
potential matches will be missed. Furthermore, sentences like “It would have been good
if it had better guitar.” will be misclassified as neither context nor syntactic/semantic
structure are modeled. We also ran experiments with two machine-learning baselines
that can take advantage of the consumer review training corpus (Section 2.1). The first,
which we call Sentence as Document (SaD), splits the training documents into sentences
and assigns each sentence the label of the corresponding document it came from. This
new training set is then used to train a logistic regression classifier. Because documents
often contain sentences with different sentiment from the overall document sentiment,

3 Though more broader-coverage lexicons exist in the literature, e.g., [18, 19], we used this
lexicon because it is publicly available (http://www.cs.pitt.edu/mpga/).
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this is a rather crude approximation. The second baseline, Document as Sentence (DaS),
trains a logistic regression document classifier on the training data in its natural form.
This baseline can be seen as either treating training documents as long sentences (hence
the name) or test sentences as short documents. Details of the classifiers and feature sets
used to train the baselines are given in Section 4. Results for these baselines are given in
Table 5. There is an improvement over using the lexicon alone, but both models make
the assumption that the observed document label is a good proxy for all the sentences in
the document, which is likely to degrade prediction accuracy.

3 A conditional latent variable model of fine-grained sentiment

The distribution of sentences in documents from our data (Table 2) suggests that doc-
uments do contain at least one dominant class, even though they do not have uniform
sentiment. Specifically, positive (negative) documents primarily consist of positive (nega-
tive) sentences as well as a significant number of neutral sentences and a small amount of
negative (positive) sentences. When combined with the problems raised in the previous
section, this observation suggests that we would like a model where sentence level clas-
sifications are 1) correlated with the observed document label, but 2) have the flexibility
to disagree when evidence from the sentence or local context suggests otherwise.

To build such a model, we start with the supervised fine-to-coarse sentiment model
described by McDonald et al. [18]. Let d be a document consisting of n sentences,
s = (s;)™ . We denote by y? = (y¢, y*) random variables that include the document
level sentiment, yd, and the sequence of sentence level sentiment, y° = (yf)?zl.“ Both
y? and all y$ belong to {POS, NEG, NEU}. We hypothesize that there is a sequential
relationship over sentence level sentiment and that the document level sentiment is
influenced by all sentence level sentiment (and vice versa). Figure 2a shows an undirected
graphical model [2] reflecting this idea. A first order Markov property is assumed,
according to which each sentence variable y; is independent of all other variables,
conditioned on the document variable y? and its adjacent sentences, Yi_1/yi 1. By
making this assumption, [18] was able to reduce this model to standard sequential
learning, which has both efficient learning and inference algorithms, such as conditional
random fields (CRFs) [16]. The strength of this model is that it allows sentence and
document level classifications to influence each other while giving them freedom to
disagree when influenced by the input. It was shown that this model can increase both
sentence and document level prediction accuracies. However, at training time, it requires
labeled data at all levels of analysis.

We are interested in the common case where document labels are available (e.g., from
star-rated consumer reviews), but sentence labels are not. A modification to the model
from Figure 2a is to treat all the sentence labels as unobserved as shown in Figure 2b.
When the underlying model from Figure 2a is a conditional random field, the model in
Figure 2b is often referred to as a hidden conditional random field (HCRF) [25]. HCRFs
are appropriate when there is a strong correlation between the observed coarse label and
the unobserved fine-grained variables. We would expect to see positive, negative and

* We will abuse notation by using the same symbols to refer to random variables and their
particular assignments.
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a) b)

Fig. 2. a) Outline of graphical model from [18]. b) Identical model with latent sentence level states.
Dark nodes are observed variables and light nodes are unobserved. The input sentences s; are
always observed. Dashed and dotted regions indicate the maximal cliques at position ¢. Note that
the document and input nodes belong to different cliques in the right model.

neutral sentences in all types of documents, but we are far more likely to see positive
sentences than negative sentences in positive documents.

3.1 Probabilistic formulation

In the conditional random field model just outlined, the distribution of the random
variables y? = (y¢, y*), conditioned on input sentences s, belongs to the exponential
family and is written

pﬂ(ydv ys|s) = exp {<¢(yd7 ydv 3)7 0> - AQ(S)} )

where 6 is a vector of model parameters and ¢(+) is a vector valued feature function (the
sufficient statistics), which by the independence assumptions of the graphical models
outlined in Figure 2a and Figure 2b, factorizes as

n
d)(yda ys, 8) = @ d)(yda yfa yf—la 3) 9
=1

where € indicates vector summation. The log-partition function, Ay (s), is a normaliza-
tion constant, which ensures that pg(y?, y®|s) is a proper probability distribution. This
is achieved by summing over the set of all possible variable assignments Y

Ag(s) =log Y exp{(ely”,y”.5).0)} .
y? €V

In an HCREF, the conditional probability of the observed variables, in our case the
document sentiment, is then obtained by marginalizing over the posited hidden variables

po(y®ls) = oy’ y’ls).
ys

As indicated in Figure 2b, there are two maximal cliques at each position ¢ in the
graphical model: one involving only the sentence s; and its corresponding latent variable
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y; and one involving the consecutive latent variables y;, y;_; and the document variable
y®. The assignment of the document variable y¢ is thus independent of the input s,
conditioned on the sequence of latent sentence variables y*. This is in contrast to the
original fine-to-coarse model, in which the document variable depends directly on the
sentence variables as well as the input [18]. This distinction is important for learning
predictive latent variables as it creates a bottleneck between the input sentences and the
document label. This forces the model to generate good predictions at the document level
only through the predictions at the sentence level. Since the input s is highly informative
of the document sentiment, the model may circumvent the latent sentence variables.
When we allow the document label to be directly dependent on the input, we observe a
substantial drop in sentence level prediction performance.

3.2 Feature functions

The feature function at position ¢ is the sum of the feature functions for each clique at that
position, that is ¢(y%, y5,y5_1,8) = ¢(y, vy, yi 1) © ¢(ys, s). The feature function
for each clique is in turn defined in terms of binary predicates of the partaking variables.
These features are chosen in order to encode the compatibility of the assignments of the
variables (and the input) in the clique.

The features of the clique (y3, s)° are defined in terms of predicates encoding the
following properties, primarily derived from [32]:

TOKENS(s;) The set of tokens in s;.

POSITIVETOKENS(s;) The set of tokens in s; matching the positive lexicon.
NEGATIVETOKENS(s;) The set of tokens in s; matching the negative lexicon.
NEGATEDTOKENS(s;) The set of tokens in s; that are negated according to [8].
#POSITIVE(s;) The cardinality of POSITIVETOKENS(s;).

#NEGATIVE(s;) The cardinality of NEGATIVETOKENS(Ss;).

VOTEFLIP(s;) The output of the vote-flip algorithm [7].

All lexicon matches are against the polarity lexicon described in [35]. Using these
predicates, we construct the feature templates listed in Table 4. This table also lists
the much simpler set of feature templates for the (y<,ys,ys_;)-clique, which only
involves various combinations of the document and sentence sentiment variables. Each
instantiation of a feature template is mapped to an element in the feature representation
using a hash function.

3.3 Estimation

The parameters of CRFs are generally estimated by maximizing an Lo-regularized con-
ditional log-likelihood function, which corresponds to maximum a posteriori probability
(MAP) estimation assuming a Normal prior, p(6) ~N(0, o%). Instead of maximizing
the joint conditional likelihood of document and sentence sentiment, as would be done

3 In the present feature model, we ignore all sentences but s;, so that instead of (v, s), we could
have written (y;, s;). We keep to the more general notation, since we could in principle look at
any part of the input s.
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Template Domain

[w € TOKENS(s;) A yi = a] w € W, a € {POS,NEG, NEU}
[w € POSITIVETOKENS(s;) A yi = al w € W, a € {POS,NEG, NEU}
[w € NEGATIVETOKENS(s;) A y; = a] w € W, a € {POS,NEG, NEU}
[#POSITIVE(s;) > #NEGATIVE(s;) A yi = a] a € {POS,NEG, NEU}
[#POSITIVE(s;) > 2 - #NEGATIVE(s; ) /\ y; = a a € {POS,NEG,NEU}
[#NEGATIVE(s;) > #POSITIVE(s;) A yi = a] a € {POS, NEG,NEU}
[#NEGATIVE(s;) > 2 - #POSITIVE(SZ) yf =d] a € {POS,NEG, NEU}
[#POSITIVE(s;) = #NEGATIVE(S;) =aq a € {POS,NEG,NEU}

[w € NEGATIONSCOPE(s;) A y; = a} w € W, a € {POS,NEG, NEU}
[VOTEFLIP(s;) =z A y; = a] a,z € {POS,NEG, NEU}

[y = d] a € {POS, NEG, NEU}

lyi = a a € {POS, NEG, NEU}

[y =a Ay =0 a,b € {POS, NEG, NEU}

[yd =a Ay =bAy] a,b,c € {POS,NEG, NEU}

Table 4. Feature templates and their respective domains. Top: (y;, 8)-clique feature templates.
Bottom: (y?, y$, y;_1)-clique feature templates. VY represents the set of all tokens.

with a standard CRF, we find the MAP estimate of the parameters with respect to the
marginal conditional log-likelihood of observed variables. Let D = {(d;, yjd)};”:1 be
a training set of document / document-label pairs, where d; = (d;, s;). We find the
parameters that maximize the total marginal probability of the observed document labels,
while keeping the parameters close to zero, according to the likelihood function

|D|

50 s 0 ’
LoM(9) = > log > po(yf,y’ls;) — ||20|.|2 : M
j=1 y°

We use the term soft estimation to refer to the maximization of (1). As an alternative to
using proper marginalization, we can perform hard estimation (also known as Viterbi
estimation) by instead maximizing

hord g, _ PR 1
L"4(9) :ZIngé'(yjayj|Sj)_ 992 )
j=1
where Y = argmax py (y?,ys|3j)' )
yS

In the hard estimation case, we only move probability mass to the most probable latent
variable assignments. In both cases, we find the parameters 6 that maximizes equations
(1) and (2) by stochastic gradient ascent with a fixed step size, n. Note that while
the likelihood function maximized in a standard CRF is concave, the introduction of
latent variables makes both the soft and hard likelihood functions non-concave. Any
gradient-based optimization method is therefore only guaranteed to find some local
maxima of equations (1) and (2). Previous work on latent variable models for sentiment
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analysis, e.g. [20], has reported on the need for complex initialization of the parameters
to overcome the presence of local minima. We did not experience such problems and for
all reported experiments we simply initialized € to the zero vector.

3.4 Inference

We are interested in two kinds of inference during training. The marginal distributions
po(y?, yi|s) and py(y?, v, yi_,|s) for each document-sentence variables (y¢, y$)™ ,
and document-sentence pair variables (y<, y$,ys_ ;)™ ,, are needed when computing the
gradient of (1), while the most probable joint assignment of all variables (3) is needed
when optimizing (2). As with the model described in [18], we use constrained max-sum
(Viterbi) to solve (3) and constrained sum-product (forward-backward) to compute the
marginal distributions [2].

When predicting the document and sentence level sentiment, we can either pick the
most probable joint variable assignment or individually assign each variable with the
label that has the highest marginal probability. It seems intuitively reasonable that the
inference used at prediction time should match that used at training time, i.e. to use sum-
product in the soft case and max-sum in the hard case. Our experimental results indicates
that this is indeed the case, although the differences between the decoding strategies is
quite small. Sum-product inference is moreover useful whenever probabilities are needed
for individual variable assignments, such as for trading off precision against recall for
each label.

In the HCRF model the interpretation of the latent states assigned to the sentence
variables, y;, are not tightly constrained by the observations during training as in a
standard CRF. We therefore need to find the best mapping from the latent states to the
labels that we are interested in. When the number of latent states is small (as is true
for our experiments), such a mapping can be easily found by evaluating all possible
mappings on a small set of annotated sentences. Alternatively we experimented with
seeding the HCRF with values from the DaS baseline, which fixes the assignment of
latent variables to labels. This strategy produced nearly identical results.

4 Experiments

We now turn to a set of experiments by which we assessed the viability of the proposed
HCRF model compared to the VoteFlip, SaD and DaS baselines described in Section 2. In
order to make the underlying statistical models the same across machine learning systems,
SaD and DaS were parameterized as log-linear models and optimized for regularized
conditional maximum likelihood using stochastic gradient ascent. This makes them
identical to the HCRF except that document structure is not modeled as a latent variable.
With regards to the HCRF model, we report results for both soft and hard optimization.
Except where noted, we report results of max-sum inference for the hard model, and
sum-product inference for the soft model as these combinations performed best. We also
measured the benefit of observing the document label at test time. This is a common
scenario in, e.g., consumer-review summarization and aggregation [13]. Note that for
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Sentence Acc. POS Sent. Iy NEG Sent. Iy NEU Sent. Fy Document Acc.
VoteFlip 41.5(-1.8,1.8) 45.7 48.9 28.0 -
SaD 47.6 (-0.8,0.9) 52.9 48.4 42.8 -
DaS 47.5(-0.8,0.7) 52.1 54.3 36.0 66.6 (-2.4,2.2)
HCREF (soft) 53.9 (-2.4,1.6) 573 58.5 47.8 65.6 (-2.9, 2.6)
HCREF (hard) 54.4 (-1.0, 1.0) 57.8 58.8 48.5 64.6 (-2.0, 2.1)
DocOracle 54.8 (-3.0,3.1) 61.1 58.5 47.0 -
HCREF (soft) 57.7 (-0.9, 0.8) 61.5 62.0 51.9 -
HCREF (hard) 58.4 (-0.8, 0.7) 62.0 62.3 53.2 -

Table 5. Median results and 95% confidence intervals from ten runs over the large data set. Above
line: without observed document label. Below line: with observed document label. Boldfaced:
significant compared to best comparable baseline, p < 0.05.

this data set the baseline of predicting all sentences with the observed document label,
denoted DocOracle, is a strong baseline.

The SaD, DaS and HCRF methods all depend on three hyper-parameters during
training — the stochastic gradient ascent learning rate, n); the regularization trade-off
parameter, o2; and the number of epochs to run. We allowed a maximum of 75 epochs
and picked values for the hyper-parameters that maximized development set macro-
averaged Fj on the document level for HCRFs and Da$S, and on the sentence level with
SaD. Since the latter uses document labels as a proxy for sentence labels, no manual
sentence-level supervision was used during any point of training; only when evaluating
the results, the sentence-level annotations were used to identify the latent states. These
three models use identical feature sets when possible (as discussed in Section 3.1). The
single exception being that SaD and DaS do not contain structured features (such as
adjacent sentence label features) since they are not structured predictors. For all models,
we mapped feature template instantiations to feature space elements using a 19-bit hash
function. Except for the lexicon-based model, training for all models is stochastic in
nature. To account for this, we performed ten runs of each model with different random
seeds. In each run a different split of the training data was used for tuning the hyper-
parameters. Results were then gathered by applying each model to the test data described
in Section 2.1 and bootstrapping median and confidence intervals of the statistic of
interest. Since sentence level predictions are not i.i.d, a hierarchical bootstrap was used

[9].

4.1 Results and analysis

Table 5 shows the results for each model in terms of sentence and document level
accuracy as well as F}-scores for each sentence sentiment category. From these results
it is clear that the HCRF models significantly outperform all the baselines with quite a
wide margin. When document labels are provided at test time, results are even better
compared to the machine learning baselines, but compared to the DocOracle baseline
the error reductions are more modest. These differences are all statistically significant at
p < 0.05 according to bootstrapped confidence interval tests.

Specifically, the HCRF with hard estimation reduces the error compared to the pure
lexicon approach by 22% and by 13% compared to the best machine learning baseline.
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Pos docs.  NEGdocs.  NEU docs. Small Medium Large
VoteFlip 59/19/27 16/61/23 40/51/32 VoteFlip 41.5(-1.8,1.8) 41.5(-1.8,1.8) 41.5(-1.8,1.8)
SaD 67/18/45 15/60/36 43/42/45 SaD 424(-2.0,1.3) 46.3(-1.2,1.0) 47.6(-0.8,0.9)
DaS 67/20/35 14/68/29 45/49/41 DaS 43.8(-0.9,0.8) 46.8(-0.6,0.7) 47.5(-0.8,0.7)

HCREF (soft) 69/14/45 07/70/37 33/49/55 HCRF (soft) 44.9(-1.7,1.5) 50.0(-1.2,1.2) 53.9 (-2.4, 1.6)
HCRF (hard) 69/14/47 06/71/36 34/48/56 HCRF (hard) 43.0(-1.2,1.3) 49.1(-14,1.5) 54.4(-1.0,1.0)

DocOracle ~ 69/00/00 00/77/00 00/00/67 DocOracle  54.8(-3.0,3.1) 54.8(-3.0,3.1) 54.8(-3.0,3.1)
HCRF (soft) 70/01/39 02/76/29 20/36/66 HCRF (soft) 54.5(-1.0,0.9) 549 (-1.0,0.8) 57.7(-0.9,0.8)
HCRF (hard) 72/00/44 00/76/23 03/38/66 HCRF (hard) 48.6(-1.6,1.4) 54.3(-1.9,1.8) 58.4(-0.8,0.7)

Table 6. Sentence results per document Table 7. Sentence accuracy for varying training size.
category (columns). Each cell contains Lower and upper offset limits of the 95% confidence
positive/negative/neutral sentence-level F;- interval in parentheses. Bold: significant compared
scores. to all comparable baselines, p < 0.05.

When document labels are provided at test time, the corresponding error reductions
are 29% and 21%. In the latter case the reduction compared to the strong DocOracle
baseline is only 8%. However, the probabilistic predictions of the HCRF are much more
informative than this simple baseline. Hard estimation for the HCREF slightly outperforms
soft estimation.

In terms of document accuracy the DaS model seem to slightly outperform the latent
variable models. This is contrary to the results reported in [36], in which latent variables
on the sentence level was shown to improve document predictions. Note, however, that
our model is restricted when it comes to document level classification, due to the lack of
connection between the document node and the input nodes in the graphical model. If
we let the document sentiment be directly dependent on the input, which corresponds to
a probabilistic formulation of the one in [36], we would expect the document accuracy
to improve. Still, experiments with such connected HCRF models actually showed a
slight decrease in document level accuracy compared to the disconnected models, while
sentence level accuracy dropped even below the SaD and DaS models. By initializing
the HCRF models with the parameters of the DaS model, results where better, but still
not on par with the disconnected models.

Looking in more detail at Table 5, we observe that all models perform best in terms of
F1 on positive and negative sentences, while all models perform much worse on neutral
sentences. This is not surprising, as neutral documents are particularly bad proxies
for sentence level sentiment, as can be seen from the distributions of sentence-level
sentiment per document category in Table 2. The lexicon based approach has difficulties
with neutral sentences, since the lexicon contains only positive and negative words and
there is no way of determining if a mention of a word in the lexicon should be considered
as sentiment bearing in a given context.

A shortcoming of the HCRF model compared to the baselines is illustrated by Table 6:
it tends to over-predict positive (negative) sentences in positive (negative) documents and
to under-predict positive sentences in neutral documents. In other words, it only predicts
well on the two dominant sentence-level categories for each document category. This is a
problem shared by the baselines, but it is more prominent in the HCRF model. A plausible
explanation comes from the optimization criteria, i.e. document-level likelihood, and
the nature of the document-level annotations, since in order to learn whether a review
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Fig. 3. Interpolated precision-recall curves with respect to positive and negative sentence level
sentiment (top) and document level sentiment (bottom). Curves shown correspond to bootstrapped
median of average precision over ten runs.

is positive, negative or neutral, it will often suffice to find the dominant sentence-level
sentiment and to identify the non-relevant sentences of the review. Therefore, the model
might need more constraints in order to learn to predict the minority sentence-level
sentiment categories. More refined document labels and/or additional constraints during
optimization might be avenues for future research with regard to these issues. Increasing
the amount of training data is another potential route to reducing this problem.

4.2 The impact of more data

In order to study the impact when varying the size of the training data, we created
additional training sets, denoted Small and Medium, by sampling 1,500 and 15,000
documents, respectively, from the full training set, denoted Large. We then performed
the same experiment and evaluation as with the full training set with these smaller sets.
Different training set samples was used for each run of the experiment. From Table 7,
we observe that adding more training data improves all models. For the small data set
there is no significant difference between the learning based models, but starting with
the medium data set, the HCRF models outperform the baselines. Furthermore, while
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Sentence Acc. POS Sent. Iy NEG Sent. Iy NEU Sent. Fy Document Acc.
VoteFlip 41.5(-1.9,2.0) 48.2 47.7 25.0 -
SaD 49.0(-1.2,1.2) 57.7 59.7 11.1 -
DaS 48.3(-0.9,0.9) 57.3 60.7 - 87.5(-1.5, 1.6)
HCREF (soft) 57.6 (-1.3,1.2) 63.6 66.9 394 88.4 (-1.9, 1.6)
HCREF (hard) 53.7 (-1.5,1.7) 62.8 68.8 - 87.8 (-1.5, 1.5)
DocOracle 57.3 (-4.0, 3.6) 67.1 72.5 - -
HCREF (soft) 60.6 (-1.0, 1.0) 68.2 71.5 38.2 -
HCREF (hard) 57.6 (-1.4,1.6) 66.2 71.7 16.0 -

Table 8. Median results and 95% confidence intervals from ten runs over the large data set with
excluded neutral documents. Above line: without observed document label. Below line: with
observed document label. Boldfaced: significant compared to best comparable baseline, p < 0.05.

the improvements are relatively small for the baselines, the improvement is substantial
for the HCRF models. Thus, we expect that the gap between the latent variable models
and the baselines will continue to increase with increasing training set size.

4.3 Trading off precision against recall

Though max-sum inference slightly outperforms sum-product inference for the hard
HCRF in terms of classification performance, using sum-product inference for prediction
has the advantage that we can tune per-label precision—recall based on the sentence-
level marginal distributions. Such flexibility is another reason for preferring statistical
approaches to rule-based approaches such as VoteFlip and the DocOracle baseline.
Figure 3 contains sentence-level precision—recall curves for HCRF (hard), with and
without observed document label, SaD and DaS, together with the fixed points of
VoteFlip and DocOracle. Curves are also shown for positive and negative document-level
precision—recall. Each curve correspond to the bootstrapped median of average-precision
over ten runs.

From these plots, it is evident that the HCRF dominates sentence-level predictions
at nearly all levels of precision/recall, especially so for positive sentences. In terms of
document-level precision/recall, the HCRF models have substantially higher precision
for lower levels of recall, again especially for positive documents, while DaS maintains
precision better at higher recall levels. Note how the document level probabilities learned
for the DaS model are note very informative for trading off precision against recall.

4.4 Ignoring neutral documents

It is worth mentioning that although the results for all systems seem low (<60% sentence
level accuracy and <70% document accuracy), they are comparable with those in [18]
(62.6% sentence level accuracy), which was trained with both document and sentence
level supervision and evaluated on a data set that did not contain neutral documents. In
fact, the primary reason for the low scores presented in this work is the inclusion of
neutral documents and sentences in our data. This makes the task much more difficult
than 2-class positive-negative polarity classification, but also more representative of
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Fig. 4. Interpolated precision-recall curves with respect to positive and negative sentence level

sentiment (top) and document level sentiment (bottom) with neutral documents excluded. Curves
shown correspond to bootstrapped median of average precision over ten runs.

real-world use-cases. To support this claim, we ran the same experiments as above
while excluding neutral documents from the training and test data. Table 8 contains
detailed results for the two-class experiments, while Figure 4 shows the corresponding
precision—recall curves. In this scenario the best HCRF model achieves a document
accuracy of 88.4%, which is roughly on par with reported document accuracies for
the two-class task in state-of-the-art systems [4, 20, 36]. Furthermore, as mentioned
in Section 2.1, inter-annotator agreement was only 86% for the three-class problem,
which can be viewed as an upper bound on sentence-level accuracy. Interestingly, while
excluding neutral documents improve accuracies and £ -scores of positive and negative
sentences, which is not unexpected since the task is made simpler, F -scores for neutral
sentences are much lower. In the DaS and hard HCREF cases, the models completely fail
to predict any neutral sentence-level sentiment.

5 Related work

Latent-variable structured learning models have been investigated recently in the context
of sentiment analysis. Nakagawa et al. [20] presented a sentence level model where the



Discovering fine-grained sentiment 15

observed information was the polarity of a sentence and the latent variables the nodes
from the syntactic dependency tree of the sentence. They showed that such a model
can improve sentence level polarity classification. Yessenalina et al. [36] presented a
document level model where the latent variables were binary predictions over sentences
indicating whether they would be used to classify the document or disregarded. In both
these models, the primary goal was to improve the performance of the model on the
supervised annotated signal, i.e., sentence level polarity in the former and document level
polarity in the latter. The accuracy of the latent variables was never assessed empirically,
even though it was argued that they should equate with the sub-sentence or sub-document
sentiment of the text under consideration.

This study inverts the evaluation and attempts to assess the accuracy of the latent
structure induced from the observed coarse supervision. In fact, one could argue that
learning fine-grained sentiment from document level labels is the more relevant question
for multiple reasons: 1) document level annotations are the most common naturally
observed sentiment signal, e.g., star-rated consumer reviews, 2) fine-grained annotations
often require large annotation efforts [34], which have to be undertaken on a domain-by-
domain basis, and 3) document level sentiment analysis is too coarse for most sentiment
applications, especially those that rely on aggregation across fine-grained topics [13].

Recent work by Chang et al. [6] had the similar goal of learning and evaluating
latent structure from high level (or indirect) supervision, though they did not specifically
investigate sentiment analysis. In that work supervision came in the form of coarse
binary labels, indicating whether an example was valid or invalid. A typical example
would be the task of learning the syntactic structure of a sentence, where the only
observed information is a binary variable indicating whether the sentence is grammatical.
The primary modeling assumption is that all latent structures for invalid instances were
themselves invalid. This allowed for an optimization formulation where invalid structures
were constrained to have lower scores than the best latent structure for valid instances.
Our task differs in that there is no natural notion of invalid instances — all documents
have valid fine-grained sentiment structure. As we have shown, this set-up lends itself
more towards latent variable models such as HCRFs or structural SVMs with latent
variables [37].

6 Conclusions

In this paper we showed that latent variable structured prediction models can effectively
learn fine-grained sentiment from coarse-grained supervision. Empirically, reductions in
error of up to 20% were observed relative to both lexicon-based and machine-learning
baselines. In the common case when document labels are available at test time as well,
we observed error reductions close to 30% and over 20%, respectively, relative to the
same baselines. In the latter case, our model reduces error with about 8% relative to the
strongest baseline. The model we employed, a hidden conditional random field, leaves
open a number of further avenues for investigating weak prior knowledge in fine-grained
sentiment analysis, most notably semi-supervised learning when small samples of data
annotated with fine-grained information are available.
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